
Final Review
A Puzzle...

Consider two massless springs with spring constants k1 and k2 and the same equilibrium length. 

1. If these springs act on a mass m in parallel, they would be equivalent to a single spring with spring constant 

kparallel. Find kparallel.

k1

k2

2. If these springs act on a mass m in series, they would be equivalent to a single spring with spring constant kseries. 

Find kseries.

k1 k2

Solution

1. For a displacement x from equilibrium, the force felt by the mass will be -(k1 + k2) x, and therefore 

kparallel = k1 + k2.

2. Consider a massless object between the first and second spring. When the full system is displaced by a distance 

x, the first spring will be stretched by x1 and the second spring by x2 so that the total displacement is given by 

x1 + x2 = x and there is no net force on the massless object k1 x1 = k2 x2. This implies

x1 =
k2

k1+k2
x (1)

x2 =
k1

k1+k2
x (2)

Therefore, the net force felt on the mass m equals 

k2 x2 =
k1 k2

k1+k2
x ≡ kseries x (3)

where we have defined the effective spring constant kseries of the system. Note that 
1

kseries
=

k1+k2

k1 k2
=

1
k1
+

1
k2

(4)

which is the called the harmonic sum of k1 and k2. □ 

Superman Orbits

Example

Superman stands on top of a mountain and throws a series of stone horizontally, with each subsequent stone 

thrown at an ever greater velocity. Describe the motions of the stones as the initial velocity of the throws increase.
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Solution

From Kepler’s First Law, the stones travel in an ellipse with the Earth’s center as one of its foci. 

Let us orient our axes so that +x
 points to the right and +y

 points up away from the center of the Earth. Given 

Kepler’s First Law, the rock must travel in an ellipse. Because the initial velocity is directly horizontal - perpendicu

lar to the line between yourself and the center of the Earth - this implies that:

1. The starting point of the rock will be the highest point

2. The semi-major and semi-minor axes of the ellipse must be along the y and x directions, respectively

3. The orbit of the particle must be symmetric in the x-direction

Here we see what the orbits can look like, with the center of the ellipse shown in orange and the two foci shown in 

dark green:

initial velocity

initial height

show orbit

If we look closely at Newton’s drawing, we see that it does look correct. However, note that:

1. If the rock travels 1
4

 of the way around the world, its final velocity as it crashes to the ground will not be parallel 
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to the ground but instead will point towards the Earth

2. If the rock travels more than 1
2

 way around the world, then it must be in an orbit and will not reach land until it 

returns to its starting position. In particular, a rock cannot be thrown 3
4

 of the way around the world! □ 

Clown Cannon

Example

During an incredible Cirque Du Soleil performance, two cannons A and B separated by a distance d simultane-

ously fire clowns into the air. Both clowns are launched at velocity v but at different angles θA and θB so that the 

two clown high-five in midair and then land in the other cannon! 

1. Assume θB is fixed. Find θA in terms of θB so that the two clowns cover the same distance d but do not collide in 

midair

2. Will both clowns reach the maximum height of their trajectory at the same time?

3. What is the minimum distance between the two clowns during their trajectory? In other words, how far do the 

clowns have to reach to high five each other? (Check your answer in the limits θA = 0, π
4

, and π
2

)

θA

d

θA
θB

Solutions

1. Both clowns have acceleration g downwards. Integrating this, we find the velocities

v


A[t] = v Cos[θA] x

+ (v Sin[θA] - g t) y

 (5)
v


B[t] = -v Cos[θB] x

+ (v Sin[θB] - g t) y

 (6)

(As a quick aside, these two equations enable us to answer Part 2 of the question: Will the clowns both reach their 

maximum heights at the same time? Absolutely not, since the maximum height is determined by 

v Sin[θ] - g tmax height = 0, and Sin[θ] will be different for the two cannons.)

We now integrate the velocity to obtain the positions of the cupcakes. Cupcake A started at (0, 0) and cupcake B 

started at (d, 0). Thus, we can integrate the above equations using v = ⅆr


ⅆt
 to obtain 

r


A[t] = v t Cos[θA] x

+ v t Sin[θA] -

1
2

g t2 y


(7)

r


B[t] = (d- v t Cos[θB]) x

+ v t Sin[θB] -

1
2

g t2 y


(8)

Cupcake A hits the ground when its y-component is zero, 
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0 = v t Sin[θA] -
1
2

g t2 (9)

which solves to t = 0 or t = 2 v

g
Sin[θA]. We want the second solution, which allows us to solve for d, 

d = v 
2 v

g
Sin[θA] Cos[θA] =

v2

g
Sin[2 θA] (10)

Similarly solving when the y-component of rB equals 0 allows us to find when cupcake B hits the ground, which 

by the symmetry of the equations must equal t = 2 v

g
Sin[θB]. Since cupcake B hits cannon A, 

0 = d- v 
2 v

g
Sin[θB] Cos[θB] (11)

which simplifies to

d =
v2

g
Sin[2 θB] (12)

Substituting back into Equation (10), 
v2

g
Sin[2 θA] =

v2

g
Sin[2 θB] (13)

or equivalently

Sin[2 θA] = Sin[2 θB] (14)

We would like to solve for θB in terms of θA. One obvious solution is to take ArcSin of both sides of the equation 

and obtain θB = θA, but we specifically don’t want this solution (since we don’t want the cupcakes to hit each 

other). So what does this mean? At this point, it helps to visualize Sin[2 x],

0.5 1.0 1.5 x

0.2

0.4

0.6

0.8

1.0

Sin[2x]

The answer lies in the fact that Sin[2 x] = Sin2 
π

2
- x. Therefore we can write the above relation for θA and θB as

Sin[2 θA] = Sin2 
π

2
- θB (15)

and upon taking the ArcSin of both sides, 

θB =
π

2
- θA (16)

Note that when θA =
π

4
, θB =

π

4
 which is the only time that both cupcakes are forced onto the same trajectory.
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θA

d

θA
θB

2. As discussed above, the two clowns will not reach their maximum heights at the same time. The clown that goes 

higher will be in the air for longer, but the horizontal velocity is constant during projectile motion, so the clown 

that takes the high road will reach their maximum height later than the clown that takes the low road, just like in 

the Loch Lomond song.

3. Substituting Equation (16) into Equations (7) and (8) and simplifying using trig identities, 

r


A = v t Cos[θA] x

+ v t Sin[θA] -

1
2

g t2 y


(17)

r


B = (d- v t Sin[θA]) x

+ v t Cos[θA] -

1
2

g t2 y


(18)

We would like to minimize the distance between the two cupcakes over t. This distance equals 

r


A - r


B =
√{v t (Cos[θA] + Sin[θA]) - d}2 + {v t (Sin[θA] -Cos[θA])}

2 (19)

To find the minima, we are going to need to differentiate this function over t and set it equal to 0. However, taking 

the derivative of a square root is incredibly messy. To simplify the calculation, notice that the minima of rA - r


B 

occurs at the same time as the minima of rA - r


B
2
, so instead we will differentiate the significantly simpler 

function 

r


A - r


B
2 = {v t (Cos[θA] + Sin[θA]) - d}2 + {v t (Sin[θA] -Cos[θA])}

2 (20)

Differentiating with respect to t, 
ⅆr


A-r


B
2

ⅆt
= 2 {v t (Cos[θA] + Sin[θA]) - d} {v (Cos[θA] + Sin[θA])}

+ 2 {v t (Sin[θA] -Cos[θA])} {v (Sin[θA] -Cos[θA])}
(21)

Simplifying and setting 0 =
ⅆr


A-r


B
2

ⅆt
, 

0 = v2 t (Cos[θA] + Sin[θA])
2 + v2 t (Sin[θA] -Cos[θA])

2 - v d (Cos[θA] + Sin[θA])

= 2 v2 t- v d (Cos[θA] + Sin[θA])
(22)

which we can solve for the time of minimum distance, 

tmin distance =
d

2 v
(Cos[θA] + Sin[θA]) (23)

To find the minimum distance, we substitute this time back into Equation (19) to obtain 
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rmin distance = {v tmin distance (Cos[θA] + Sin[θA]) - d}2 + {v tmin distance (Sin[θA] -Cos[θA])}
2

= 
d

2
(1+ Sin[2 θA]) - d

2
+ 

d

2
Cos[2 θA]

2

=
d

2
(Sin[2 θA] - 1)2 +Cos[2 θA]

2

=
d

2
2 (1- Sin[2 θA])

=
d

2
(Cos[θA] - Sin[θA])

2

=
d

2
Cos[θA] - Sin[θA]

That’s a pretty neat formula! Note that tmin distance does not occur halfway through the flights of either cupcake A or 

cupcake B (t = v

g
Sin[θA] and t = v

g
Sin[θB], respectively) except for the special cases θA = 0, π

4
, and π

2
. 

The two cases θA = 0 and θA =
π

2
 are trivial since d = 0 and the two clowns start off at the same spot, so that 

rmin distance = 0. For θA ≈
π

4
, both clowns take roughly the same path (and if θA =

π

4
 exactly, then both clowns collide 

in midair), so we expect rmin distance ≈ 0, as is indeed seen by the formula above. For any other trajectory, the point 

of closest approach between the two clowns will not be when either cupcake is at the peak of its flight. Here is a 

diagram of the trajectories of the flying cupcakes (shown in purple), with the points of closest approach shown in 

green.

t

θA

d

θA
θB

Driven Oscillations

Example

Two identical masses are attached to three identical springs as shown below. The system starts off at rest with all 

of the springs at their unstretched length. At time t = 0, the left mass is subjected to a driving force Fd Cos[2 ω t] 

and the right mass to a driving force 2 Fd Cos[2 ω t], where ω = 
k

m

1/2

. Our goal will be to find the resulting 

displacement of the left mass xL[t] and the right mass xR[t].
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t

driving

m m

k k k

1. Write down the accelerations x¨L[t] and x¨R[t] of the left and right masses in terms of the forces acting upon each 

mass. (Check your answer for the special cases xL = xR, xL = 0, and xR = 0 to ensure you do not have any signs 

flipped)

2. Add your two equations from Part 1 to find the sum of accelerations x¨L[t] + x
¨

R[t] and the difference in accelera-

tions x¨L[t] - x
¨

R[t]

3. Suppose the solutions for the sum and difference of the displacements have the forms
xL[t] + xR[t] = A Cos[2 ω t]

xL[t] - xR[t] = B Cos[2 ω t] (25)

Substitute these equations into the differential equations from Part 2 and determine A and B.

4. Find xL[t] and xR[t]. Explain the motion of the left mass using force analysis

Solution

1. The equations of motion for the two masses are
m x
¨

L[t] = -k xL[t] + k (xR[t] - xL[t]) + Fd Cos[2 ω t]

m x
¨

R[t] = -k xR[t] - k (xR[t] - xL[t]) + 2 Fd Cos[2 ω t] (26)

It always helps to check these equations in various limits. For example, if xL[t] = xR[t], the middle spring will not 

exert a force and the two masses will feel a leftwards force if they are displaced to the right (0 < xL[t], xR[t]). If 

xL[t] = 0 and xR[t] > 0, the left mass will feel a spring force to the right while the right mass will feel two spring 

forces to the left. If xR[t] = 0 and xL[t] > 0, the left mass will feel two spring forces to the left and the right mass 

will feel a spring force to the right. You can check that all of these statements are supported by the equations 

above.

2. The sum and difference of the two accelerations is given by

x
¨

L[t] + x
¨

R[t] = -ω2(xL[t] + xR[t]) + 3 Fd

m
Cos[2 ω t]

x
¨

L[t] - x
¨

R[t] = -3 ω2(xL[t] - xR[t]) -
Fd

m
Cos[2 ω t]

(27)

where we have used ω2 =
k

m
. Note that the top differential equation is written purely in terms of xL[t] + xR[t] and 

its second derivative, while the bottom equation is written purely in terms of xL[t] - xR[t] and its derivative. Thus, 

in terms of the sum and difference of the displacements, these two differential equations are uncoupled. Each 

equation has the same solution as a driven harmonic oscillator.

3. Substituting in the forms of Equation (25) into Equation (27), we obtain

-4 ω2 A Cos[2 ω t] = -ω2 A Cos[2 ω t] + 3 Fd

m
Cos[2 ω t]

-4 ω2 B Cos[2 ω t] = -3 ω2 B Cos[2 ω t] -
Fd

m
Cos[2 ω t]

(28)

Note that the Cos[2 ω t] terms drop from both equations - this must always happen because A and B cannot have 

time dependence. Simplify the above equations,
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A = -
Fd

k

B =
Fd

k

(29)

4. Note that 

xL[t] =
(xL[t]+xR[t])+(xL[t]-xR[t])

2

xR[t] =
(xL[t]+xR[t])-(xL[t]-xR[t])

2

(30)

Substituting in Equations (25) and (29), 

xL[t] =
-

Fd

k
Cos[2 ω t]+

Fd

k
Cos[2 ω t]

2
= 0

xR[t] =
-

Fd

k
Cos[2 ω t]-

Fd

k
Cos[2 ω t]

2
= -

Fd

k
Cos[2 ω t]

(31)

The motion of the system is shown below.

t

m m

driving force

spring force

Apparently, the left mass is stationary! This must mean that the net forces on the left mass are always zero, which 

we can quickly verify. Since xL[t] = 0, the only spring force on the left mass is given by k xR[t] = -Fd Cos[2 ω t] 

according to Equation (31). This force is exactly balanced by the driving force exerted on the left mass, thereby 

resulting in no net force and hence no net motion! □ 

Leaning Ladder

Example

A ladder of length l and uniform mass density stands on a frictionless floor and leans against a frictionless wall at 

an initial angle θ0 relative to the vertical. It is released from rest, whereupon the bottom end slides away from the 

wall, and the top end slides down the wall. When will the ladder lose contact with the wall?
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θ

l

Solution 1

Let r = l

2
. The ladder has a moment of inertia 1

12
m l2 =

1
3

m r2 about its center, but we will use the more general 

I = η m r2. Let θ be the angle between the wall and the ladder, which also equals the vertical angle from the wall to 

the center of mass. This symmetry implies that the center of the ladder (while it stays in contact with the wall) 

travels along a circle! Here is what the motion of the ladder would look like if its ends were forced to remain on 

the floor and wall (for example, if its ends were clamped onto frictionless rails on the floor and wall).

θ

center center path vCM vCM
(x)

θ

θ

r

rr

vCM

vCM
(x)

Ladder clamped to wall and floor

Before we begin solving this problem, let's gain some insight into the motion of the ladder and understand why it 

should come away from the wall before it hits the ground. The forces acting on the ladder are the normal forces Nw 

and Nf  from the wall and floor, respectively, as well as gravity acting on the center of mass. 
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The motion of the center of mass (the center of the ladder) follows the semi-circle (r Sin[θ], r Cos[θ]). The force 

Nw will accelerate the ladder to the right, while N f  will try and rotate the ladder so that it stays on the wall. How-

ever, as θ approaches π
2

, the velocity of the ladder would have to be straight down in order for it to stay attached to 

the wall and floor, and this would imply that there must be a force acting on it to the left (i.e. Nw would have to be 

negative) to achieve this. So somewhere before this point Nw = 0, and since the normal force can’t be negative 

(unless we set up some rails and force the ladder to stay attached to the wall), past this point the ladder will 

detaches from the wall. Let’s find out when that is.

By conservation of energy, 

m g r Cos[θ0] = m g r Cos[θ] + 1
2

m r θ


2
+

1
2
(η m r2) θ

 2
(32)

where θ

 appears in the kinetic energy term (because it describes how the center of mass moves) and the same θ


 

appears in the rotational energy term (because θ is the angle between the ladder and the vertical). This allows us to 

solve for the velocity v = r θ

 as 

1
2

m (1+ η) v2 = m g r (Cos[θ0] -Cos[θ]) (33)

v = 
2 g r

1+η
(Cos[θ0] -Cos[θ])

1/2
(34)

The velocity has a horizontal component

vx = v Cos[θ] ∝ (Cos[θ0] -Cos[θ])1/2 Cos[θ] (35)

We want to find out when this is maximized, since a negative slope of vx (also denoted as x ) implies that Nw points 

to the left. To clarify this point, here is what the motion of the ladder would look like if the ladder was clamped 

onto frictionless rails on the floor and wall. The dashed vertical line signifies when Che horizontal velocity x  

reaches its maximum value, at which point Nw = 0. 

θ[t]
x[t]
y[t]

0.0 0.5 1.0 1.5 2.0 t0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ladder clamped to wall and floor

θ

[t]

x

[t]

y

[t]

0.5 1.0 1.5 2.0 t

-1.0

-0.5

0.5

1.0

1.5

2.0
Ladder clamped to wall and floor

Thus, our goal is to find the time at which vx = x
  is maximized, assuming that the ladder remains clamped to the 

floor and wall, which we do by taking the time derivative ⅆvx

ⅆt
 and setting it equal to zero. However, a very conve-

nient trick that nearly always works in such situations is to notice that vx is maximized when vx
2 is maximized 

(since vx is never negative), but this squaring removes the nasty square roots and makes the computation signifi-

cantly easier. We can also ignore all of the extraneous terms that do not involve θ. Therefore, 
ⅆvx

2

ⅆθ
∝ Sin[θ] Cos[θ]2 - (Cos[θ0] -Cos[θ]) 2 Cos[θ] Sin[θ]

= 3 Sin[θ] Cos[θ]2 - 2 Cos[θ] Sin[θ] Cos[θ0]

=
1
2

Sin[2 θ] (3 Cos[θ] - 2 Cos[θ0])

(36)

Aside from the trivial solutions Sin[2 θ] = 0 when the ladder either begins flat against the floor or against the wall, 

we see that vx
2 (and therefore vx) is maximized when 

Cos[θ] = 2
3

Cos[θ0] (37)
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If we multiply both sides of this equation by 2 r, we see that the ladder falls when it reaches 2
3

 of its initial height 

against the wall! Also, this result is independent of η, which implies that for it will hold for any mass distribution, 

provided that the center of mass is still at the center of the ladder. 

The following simulation shows the actual motion of the ladder as it detaches from the wall.

t

Ladder full motion

Note that the detachment of the ladder from the wall is very subtle. It is easier to see this change by looking at the 

plots of x [t] over time. When the ladder detaches, x [t] = constant because there are no longer any horizontal forces 

on the ladder.

θ[t]
x[t]
y[t]

0.0 0.5 1.0 1.5 2.0 t0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ladder full motion

θ

[t]

x

[t]

y

[t]

0.5 1.0 1.5 2.0 t

-1.0

-0.5

0.5

1.0

1.5

2.0
Ladder full motion

Solution 2

Until the ladder disconnects from the wall,

x = r Sin[θ] (38)
y = r Cos[θ] (39)

where we suppress the time dependence of θ. Differentiating twice, we obtain

x
¨
= -r θ

 2
Sin[θ] + r θ

¨
Cos[θ] (40)

y
¨
= -r θ

 2
Cos[θ] - r θ

¨
Sin[θ] (41)
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Denote the normal forces from the wall and floor as Nw and Nf , respectively. The force equations in the x and y 

directions and the torque equation (about the center of mass of the ladder) are

Nw = m x
¨ (42)

Nf -m g = m y
¨ (43)

r (Nf Sin[θ] -Nw Cos[θ]) = η m r2 θ
¨

(44)

where in the last equation we have used the fact that θ is the angle about which the center of mass rotates. The 

above 5 equations have 6 unknowns: N f , Nw, x
¨, y
¨, θ


, θ
¨
. The last equation comes from conservation of energy 

m g r Cos[θ0] = m g r Cos[θ] + 1
2

m r θ


2
+

1
2
(η m r2) θ

 2
(45)

FullSimplify@Solve

Nw ⩵ m x''[t],

Nf - m g ⩵ m y''[t],

r Nf*Sin[θ[t]] - Nw*Cos[θ[t]] ⩵ η m r2 θ''[t],

m g r (Cos[θ[0]] - Cos[θ[t]]) ==
1

2
m (1 + η) (r θ'[t])2

 /. 

x''[t] → -r (θ'[t])2 Sin[θ[t]] + r θ''[t] Cos[θ[t]],

y''[t] → -r (θ'[t])2 Cos[θ[t]] - r θ''[t] Sin[θ[t]]

,

Nw, Nf, θ'[t], θ''[t]

[[2]]

Nw →
1

1 + η

g m (-2 Cos[θ[0]] + 3 Cos[θ[t]]) Sin[θ[t]], Nf →
1

2 (1 + η)

g m (3 + 2 η - 4 Cos[θ[0]] Cos[θ[t]] + 3 Cos[2 θ[t]]),

θ′[t] →
2 g (Cos[θ[0]] - Cos[θ[t]])

r (1 + η)

, θ′′[t] →
g Sin[θ[t]]

r + r η



Looking at the normal force 

Nw =
m g

1+η
Sin[θ] (3 Cos[θ] - 2 Cos[θ0]) (46)

we see that it equals zero for the trivial solutions θ = 0 and θ = π

2
 (when the ladder either begins flat on the floor or 

flat against the wall) or the non-trivial solution for a starting position θ0 ∈ 0, π

2
 when 

Cos[θ] = 2
3

Cos[θ0] (47)

Notice that although this method was more complicated, we did gain more insight about this problem. In particu-

lar, we now have explicit relations for our unknowns N f , Nw, x
¨, y
¨, θ


, and θ

¨
 as a function of θ. □ 

Mathematica Initialization
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